|
公司基本資料信息
|
硅膠色譜填料研究及發展主要向著兩個方向進行:第l一個方向是通過控制硅膠基球的形貌、結構、尺寸、材料組成來提高色譜分離性能;第二個方向是通過表面修飾和改性來制備不同分離模式和不同選擇性的色譜填料以滿足其更廣泛的分離分析的需求。
Van Deemter色譜理論方程式告訴我們色譜柱效和塔板高度由渦流擴散系數,分子擴散系數及傳質阻力系數決定。而影響這些參數的主要是色譜填料形貌結構,粒徑大小及分布,孔徑大小。
從全多孔球形硅膠到表面多孔核殼結構硅膠
雖然亞2微米小粒徑硅膠色譜填料使用使得HPLC的分辨率、檢測速度及柱效達到前l所未有的水平,但儀器設備壓力也達到極限。因為壓力與粒徑平方成反比,目前儀器設備已經很難能滿足通過進一步減小粒徑來提高柱效的目的。為了實現在常規的HPLC 色譜儀器上實現UPLC的分離速度和效果,著l名教l授Kirkland開發出核殼結構(Core-shell)硅膠色譜填料。核殼結構硅膠色譜填料是在實心硅球表面包覆多孔層。表面多孔核殼結構微球進一步降低分子軸向擴散效應,縮短了傳質路徑,與全多孔填料相比其傳質速率更快,具有更高的柱效及更低的背壓,在普通的液相色譜儀器上得到 UPLC 的分離速度和效果。核殼結構硅膠色譜填料已越來越多在HPLC上使用。
反相色譜是比較常用的色譜分離模式,占到了全部分析色譜的70%左右。通常只需優化流動相組成就可實現對大多數有機化合物和多肽的分離分析。反相硅膠色譜填料的制備方法比較簡單,主要是通過硅膠表面羥基與帶不同烷l基鏈或試劑鍵合。其中C4、C8和C18 硅膠鍵合相是使用比較廣泛的反相色譜填料。反相色譜填料的研究是朝著柱效高、重現性好、分析速度快、制備方法簡單、硅羥基掩蔽完全、選擇性好、pH使用范圍寬、壽命長等目標進行。反相硅膠色譜填料發展主要是兩方面:一方面是制備越來越豐富的鍵合相以滿足HPLC 越來越廣的分離選擇性的要求;另外一方面是解決反相色譜填料表面殘留硅羥基帶來拖尾、pH適用范圍受限、及使用壽命短等問題。反相色譜填料制備的過程中, 由于位阻原因,硅膠表面的硅羥基不可能全部與試劑反應,殘留的硅羥基在反相分離過程中會與極性分子形成非特異性吸附,導致l極性化合物尤其是堿性化合物色譜峰變寬,甚至嚴重拖尾,柱效下降等。另外殘留硅羥基還會影響硅膠色譜填料的耐酸堿性,并限制其pH使用范圍,縮短填料使用壽命。因此開發有效封尾(封端)技術以減少或消除殘留硅羥基從而改善反相色譜填料性能是色譜填料研究的重要方向之一。另外在封端過程中引進帶正電荷的功能基團也可以屏蔽硅羥基對堿性化合物非特異吸附。
HILIC 色譜填料自1990年Alpert提出親水作用色譜的概念以來,其應用逐漸增多。HILIC是基于極性化合物在色譜固定相表面水層和流動相之間進行的親水分配作用達到保留的一種分離模式。在HILIC分離中,流動相中水的比例越小,則洗脫能力越弱; 反之,洗脫能力越強。化合物的極性越小,則保留越弱; 反之,則保留越強。HILIC尤其適合強極性化合物分離和分析。各種商品化親水作用色譜材料的種類日益豐富,涵蓋了氨基、二醇基、咪唑基、三氮唑基、酰胺型、糖型和兩l性離子型鍵合相,為親水作用色譜的發展和應用奠定了良好的基礎。HILIC 可以作為正相色譜的替代和反相色譜的有效補充。